b. Estimasi
Setelah menetapkan model sementara dari hasil identifikasi, yaitu menentukan nilai p, d, dan q, langkah berikutnya adalah melakukan estimasi paramater autoregressive dan moving average yang tercakup dalam model (Firmansyah, 2000). Jika teridentifikasi proses AR murni maka parameter dapat diestimasi dengan menggunakan kuadrat terkecil (Least Square). Jika sebuah pola MA diidentifikasi maka maximum likelihood atau estimasi kuadrat terkecil, keduanya membutuhkan metode optimisasi non-linier(Griffiths, 1993), hal ini terjadi karena adanya unsur moving average yang menyebabkan ketidak linieran parameter (Firmansyah, 2000). Namun, saat ini sudah tersedia berbagai piranti lunak statistik yang mampu menangani perhitungan tersebut sehingga kita tidak perlu khawatir mengenai estimasi matematis.
c. Diagnostic Checking
Setelah melakukan estimasi dan mendapatkan penduga paramater, agar model sementara dapat digunakan untuk peramalan, perlu dilakukan uji kelayakan terhadap model tersebut. Tahap ini disebut diagnostic checking, dimana pada tahap ini diuji apakah spesifikasi model sudah benar atau belum. Pengujian kelayanan ini dapat dilakukan dengan beberapa cara.
(1) Setelah estimasi dilakukan, maka nilai residual dapat ditentukan. Jika nilai-nilai koefisien autokorelasi residual untuk berbagi time lag tidak berbeda secara signifikan dari nol, model dianggap memadai untuk dipakai sebagai model peramalan.
(2) Menggunakan statistik Box-Pierce Q, yang dihitung dengan formula :
(3) Menggunakan varian dari statistik Box-Pierce Q, yaitu statistik Ljung-Box(LB), yang dapat dihitung dengan :
Sama seperti Q statistik, statistik LB mendekati c2 kritis dengan derajat kebebasan m. Jika statistik LB lebih kecil dari nilai c2 kritis, maka semua koefisien autokorelasi dianggap tidak berbeda dari nol, atau model telah dispesifikasikan dengan benar. Statistik LB dianggap lebih unggul secara statistik daripada Q statistik dalam menjelaskan sample kecil. (4) Menggunakan t statistik untuk menguji apakah koefisien model secara individu berbeda dari nol. Apabila suatu variabel tidak signifikan secara individu berarti variabel tersebut seharusnya dilepas dari spesifikasi model lain kemudian diduga dan diuji. Jika model sementara yang dipilih belum lolos uji diagnostik, maka proses pembentukan model diulang kembali. Menemukan model ARIMA yang terbaik merupakan proses iteratif.
d. Peramalan (forecasting)
Setelah model terbaik diperoleh, selanjutnya peramalan dapat dilakukan. Dalam berbagai kasus, peramalan dengan metode ini lebih dipercaya daripada peramalan yang dilakukan dengan model ekonometri tradisional. Namun, hal ini tentu saja perlu dipelajari lebih lanjut oleh para peneliti yang tertarik menggunakan metode serupa.
Berdasarkan ciri yang dimilikinya, model runtun waktu seperti ini lebih cocok untuk peramalan dengan jangkauan sangat pendek, sementara model struktural lebih cocok untuk peramalan dengan jangkauan panjang (Mulyono, 2000 dalam Firmansyah, 2000)