Kamis, 15 Desember 2011

ARIMA (Autoregressive Integrated Moving Average)


I. Pengertian
Teknik analisis data dengan metode ARIMA dilakukan karena merupakan teknik untuk mencari pola yang paling cocok dari sekelompok data (curve fitting), dengan demikian ARIMA memanfaatkan sepenuhnya data masa lalu dan sekarang untuk melakukan peramalan jangka pendek yang akurat (Sugiarto dan Harijono, 2000). ARIMA seringkali ditulis sebagai ARIMA (p,d,q) yang memiliki arti bahwa p adalah orde koefisien autokorelasi, d adalah orde / jumlah diferensiasi yang dilakukan (hanya digunakan apabila data bersifat non-stasioner) (Sugiharto dan Harijono, 2000) dan q adalah orde dalam koefisien rata-rata bergerak(moving average).
Peramalan dengan menggunakan model ARIMA dapat dilakukan dengan rumus :
II. Stasioneriats Data
     Data yang tidak stasioner memiliki rata-rata dan varian yang tidak konstan sepanjang waktu. Dengan kata lain, secara ekstrim data stasioner adalah data yang tidak mengalami kenaikan dan penurunan. Selanjutnya regresi yang menggunakan data yang tidak stasioner biasanya mengarah kepada regresi lancung. Permasalahan ini muncul diakibatkan oleh variabel (dependen dan independen) runtun waktu terdapat tren yang kuat (dengan pergerakan yang menurun maupun meningkat). Adanya tren akan menghasilkan nilai R2 yang tinggi, tetapi keterkaitan antar variabel akan rendah (Firmansyah, 2000).
       Model ARIMA mengasumsikan bahwa data masukan harus stasioner. Apabila data masukan tidak stasioner perlu dilakukan penyesuaian untuk menghasilkan data yang stasioner. Salah satu cara yang umum dipakai adalah metode pembedaan (differencing). Metode ini dilakukan dengan cara mengurangi nilai data pada suatu periode dengan nilai data periode sebelumnya.
         Untuk keperluan pengujian stasioneritas, dapat dilakukan dengan beberapa metode seperti autocorrelation function (correlogram), uji akar-akar unit dan derajat integrasi.
a.       Pengujian stasioneritas berdasarkan correlogram

Suatu pengujian sederhana terhadap stasioneritas data adalah dengan menggunakan fungsi koefisien autokorelasi (autocorrelation function / ACF). Koefisien ini menunjukkan keeratan hubungan antara nilai variabel yang sama tetapi pada waktu yang berbeda. Correlogram merupakan peta / grafik dari nilai ACF pada berbagai lag. Secara matematis rumus koefisien autokorelasi adalah (Sugiharto dan Harijono, 2000:183) :

Untuk menentukan apakah nilai koefisien autokorelasi berbeda secara statistik dari nol dilakukan sebuah pengujian. Suatu runtun waktu dikatakan stasioner atau menunjukkan kesalahan random adalah jika koefisien autokorelasi untuk semua lag secara statistik tidak berbeda signifikan dari nol atau berbeda dari nol hanya untuk berberapa lag didepan. Untuk itu perlu dihitung kesalahan standard dengan rumus :
Dimana n menunjukkan jumlah observasi. Dengan interval kepercayaan yang dipilih, misalnya 95 persen, maka batas signifikansi koefisien autokorelasi adalah :
Suatu koefisien autokorelasi disimpulkan tidak berbeda secara signifikan dari nol apabila nilainya berada diantara rentang tersebut dan sebaliknya. Apabila koefisien autokorelasi berada diluar rentang, dapat disimpulkan koefisien tersebut signifikan, yang berarti ada hubungan signifikan antara nilai suatu variabel dengan nilai variabel itu sendiri dengan time lag 1 periode.

III. Tahapan Metode ARIMA
Metode ARIMA menggunakan pendekatan iteratif dalam mengidentifikasi suatu model yang paling tepat dari berbagai model yang ada. Model sementara yang telah dipilih diuji lagi dengan data historis untuk melihat apakah model sementara yang terbentuk tersebut sudah memadai atau belum. Model sudah dianggap memadai apabila residual (selisih  hasil peramalan dengan data historis) terdistribusi secara acak, kecil dan independen satu sama lain. Langkah-langkah penerapan metode ARIMA secara berturut-turur adalah : identifikasi model, estimasi parameter model, diagnostic checking, dan peramalan (forecasting).
a.   Identifikasi model
Seperti yang dijelaskan sebelumnya bahwa model ARIMA hanya dapat diterapkan  untuk deret waktu yang stasioner. Oleh karena itu, pertama kali yang harus dilakukan adalah menyelidiki apakah data yang kita gunakan sudah stasioner atau belum. Jika data tidak stasioner, yang perlu dilakukan adalah memeriksa pada pembedaan beberapa data akan stasioner, yaitu menentukan berapa nilai d. Proses ini dapat dilakukan dengan menggunakan koefisien ACF(Auto Correlation Function), atau uji akar-akar unit (unit roots test) dan derajat integrasi. Jika data sudah stasioner sehingga tidak dilakukan pembedaan terhadap data runtun waktu maka d diberi nilai 0.
Disamping menentukan d, pada tahap ini juga ditentukan berapa jumlah nilai lag residual (q) dan nilai lag dependen (p) yang digunakan dalam model. Alat utama yang digunakan untuk mengidentifikasi q dan p adalah ACF dan PACF (Partial Auto Correlation Funtion / Koefisien Autokorelasi Parsial), dan correlogram yang menunjukkan plot nilai ACF dan PACF terhadap lag.
Koefisien autokorelasi parsial mengukur tingkat keeratan hubungan antara Xt dan Xt-k sedangkan pengaruh dari time lab 1,2,3,…,k-1 dianggap konstan. Dengan kata lain, koefisien autokorelasi parsial mengukur derajat hubungan  antara nilai-nilai sekarang dengan nilai-nilai sebelumnya (untuk time lag tertentu), sedangkan pengaruh nilai variabel time lab yang lain dianggap konstan. Secara matematis, koefisien autokorelasi parsial berorde m didefinisikan sebagai koefisien autoregressive terakhir dari model AR(m).



b.       Estimasi
Setelah menetapkan model sementara dari hasil identifikasi, yaitu menentukan nilai p, d, dan q, langkah berikutnya adalah melakukan estimasi paramater autoregressive dan moving average yang tercakup dalam model (Firmansyah, 2000). Jika teridentifikasi proses AR murni maka parameter dapat diestimasi dengan menggunakan kuadrat terkecil (Least Square). Jika sebuah pola MA diidentifikasi maka maximum likelihood atau estimasi kuadrat terkecil, keduanya membutuhkan metode optimisasi non-linier(Griffiths, 1993),  hal ini terjadi karena adanya unsur moving average yang menyebabkan ketidak linieran parameter (Firmansyah, 2000). Namun, saat ini sudah tersedia berbagai piranti lunak statistik yang mampu menangani perhitungan tersebut sehingga kita tidak perlu khawatir mengenai estimasi matematis.
c.      Diagnostic Checking
Setelah melakukan estimasi dan mendapatkan penduga paramater, agar model sementara dapat digunakan untuk peramalan, perlu dilakukan uji kelayakan terhadap model tersebut. Tahap ini disebut diagnostic checking, dimana pada tahap ini diuji apakah spesifikasi model sudah benar atau belum. Pengujian kelayanan ini dapat dilakukan dengan beberapa cara.
(1)   Setelah estimasi dilakukan, maka nilai residual dapat ditentukan. Jika nilai-nilai koefisien autokorelasi residual untuk berbagi time lag tidak berbeda secara signifikan dari nol, model dianggap memadai untuk dipakai sebagai model peramalan.
(2)  Menggunakan statistik Box-Pierce Q, yang dihitung dengan formula :

(3)  Menggunakan varian dari statistik Box-Pierce Q, yaitu statistik Ljung-Box(LB), yang dapat dihitung dengan :
Sama seperti Q statistik, statistik LB mendekati c2 kritis dengan derajat kebebasan m. Jika statistik LB lebih kecil dari nilai c2 kritis, maka semua koefisien autokorelasi dianggap tidak berbeda dari nol, atau model telah dispesifikasikan dengan benar. Statistik LB dianggap lebih unggul secara statistik daripada Q statistik dalam menjelaskan sample kecil.
(4) Menggunakan t statistik untuk menguji apakah koefisien model secara individu berbeda dari nol. Apabila suatu variabel tidak signifikan secara individu berarti variabel tersebut seharusnya dilepas dari spesifikasi model lain kemudian diduga dan diuji. Jika model sementara yang dipilih belum lolos uji diagnostik, maka proses pembentukan model diulang kembali. Menemukan model ARIMA yang terbaik merupakan proses iteratif.
d.       Peramalan (forecasting)
Setelah model terbaik diperoleh, selanjutnya peramalan dapat dilakukan. Dalam berbagai kasus, peramalan dengan metode ini lebih dipercaya daripada peramalan yang dilakukan dengan model ekonometri tradisional. Namun, hal ini tentu saja perlu dipelajari lebih lanjut oleh para peneliti yang tertarik menggunakan metode serupa.
            Berdasarkan ciri yang dimilikinya, model runtun waktu seperti ini lebih cocok untuk peramalan dengan jangkauan sangat pendek, sementara model struktural lebih cocok untuk peramalan dengan jangkauan panjang (Mulyono, 2000 dalam Firmansyah, 2000)

5 komentar:

tolong dibalas pliiisss
cara mendapatkan koefisisen autoregressive dan koefisien moving average secara manual gimana??

Free slots free play on youtube
‎Free Slots Online Games · ‎The Best Free Slots Sites · ‎Real Money Slots · ‎Real Money Slots Online · download youtube videos to mp3 ‎Slots for Free · ‎Free Play

Posting Komentar